Damage and Fracture Mechanics
ثبت نشده
چکیده
Interfaces between two different mixes or strengths of concrete appear in large concrete structures involving mass concreting such as dams, nuclear containment vessels, cooling towers etc., since joints between successive lifts are inevitable. These joints and interfaces are potential sites for crack formation, leading to weakening of mechanical strength and subsequent failure. Research involving concrete-concrete bi-material interface can provide very useful information in the field of repairs and rehabilitation of concrete structures. As concrete is a heterogeneous material, its fracture behavior is governed by the formation of a fracture process zone (FPZ) which forms ahead of the crack-tip. Due to the formation of FPZ, linear elastic fracture mechanics (LEFM) is not applicable to concrete, and hence the nonlinear fracture mechanics (NLFM) based study becomes essential. Further, in case of a bi-material interface the stress singularities are oscillatory in nature and the fracture behavior of a concrete-concrete bi-material interface is much more complicated. Advanced experimental techniques such as scanning electron microscopy, nano and micro indentation, acoustic emissions and digital image correlations are used for characterizing interfaces between different strengths of concrete with an aim of understanding the fracture processes and determination of the fracture parameters (Figures 4.16 and 4.17).
منابع مشابه
Experimental Analysis of Fracture and Damage Mechanics of Pre-Stressed Concrete Sleepers B70: Part B- Analysis
Initial cracks occur in high strength concrete sleepers for various reasons, such as shrinkage and wrong curing and long lifetime of over 50 years of sleepers. These cracks may lead to complete failure of the structure. In order to more accurately design the sleepers, fracture mechanics (not strength of materials) should be incorporated. In order to achieve this purpose, it is important to fore...
متن کاملDamage Assessment using an Inverse Fracture Mechanics approach
This paper studies the application of an inverse methodology for problem solving in fracture mechanics using the finite element analysis. The method was applied to both detection of subsurface cracks and the study of propagating cracks. The procedure for detection of subsurface cracks uses a first order optimization analysis coupled with a penalty function to solve for the unknown geometric par...
متن کاملModelling of Crack Growth Using a New Fracture Criteria Based Peridynamics
Peridynamics (PD) is a nonlocal continuum theory based on integro-differential equations without spatial derivatives. The elongation fracture criterion is implicitly incorporated in the PD theory, and fracture is a natural outcome of the simulation. On the other hand, a new fracture criterion based on the crack opening displacement combined with peridynamic (PD-COD) is proposed. When the relati...
متن کاملThe Fracture Mechanics Concept of Creep and Creep/Fatigue Crack Growth in Life Assessment
There is an increasing need to assess the service life of components containing defect which operate at high temperature. This paper describes the current fracture mechanics concepts that are employed to predict cracking of engineering materials at high temperatures under static and cyclic loading. The relationship between these concepts and those of high temperature life assessment methods is ...
متن کاملFINITE ELEMENT PREDICTION OF DUCTILE FRACTURE IN AUTOMOTIVE PANEL FORMING: COMPARISON BETWEEN FLD AND LEMAITRE DAMAGE MODELS
In sheet metal forming processes with complex strain paths, a part is subjected to large plastic deformation. This severe plastic deformation leads to high plastic strain localization zones and subsequent accumulation of those strains. Then internal and superficial micro-defects and in other words ductile damage is created. This damage causes quality problems such as fracture. Therefore, design...
متن کاملThe Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet
The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011